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Let II  be a quantum logic; by this we mean an orthocomplemented, 
orthomodular, partially ordered set. We assume that II carries a sufficiently 
large collection A of states (probability measures). Then, A is embedded 
as a base for the cone of a partially ordered normed space ~o and II  is 
also embedded in the dual order-unit Banach space ~*. We consider 
conditions on the pairs (A, YI) and (~, ~*) that guarantee that YI is a 
dense subset of the extreme points of the positive part of the unit bail of 
~*.  We demonstrate a connection of these conditions in noncommutative 
measure theory. The assumptions made here are far weaker than the 
assumptions of the traditional quantum mechanical formalisms and also 
apply to situations quite different from quantum mechanics. Finally, 
we show the connections of this theory to the well-known models of 
quantum mechanics and classical measure theory. 

1. I N T R O D U C T I O N  

The theory  o f  empir ica l  logics, or  general ized qua n tum logics, has 
recent ly been in t roduced  and deve loped  by  Foul i s  and  Randa l l  (1972, 
1973a, b). In  these papers ,  they in t roduced  the no t ion  o f  " a  manua l  o f  
opera t ions , "  which is a formal  mathemat ica l  s tructure descr ibing very general  
l a b o r a t o r y  procedures .  Using  these manuals  they define the concepts  o f  
state, observable ,  p ropos i t ion ,  logic, etc. These physical  s i tuat ions are thus 
very general  and  conta in  as special examples  classical Boolean logic and  
Hi lbe r t  space q u a n t u m  mechanics.  M o r e  impor tan t ly ,  this theory  conta ins  
many  examples  tha t  are very different f rom qua n tum mechanics ;  yet, in 
these examples  s imultanei ty  o f  measurement  and uncer ta in ty  can be de- 
scr ibed with reasonable  proficiency. Since the results in this paper  concern 
the  geometr ic  and  l inear  topologica l  p roper t ies  o f  quan tum logics embedded  
in cer ta in  Banach  spaces, we will no t  begin with the founda t ion  concept  o f  
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a manual. Rather, we will assume at the outset that our logic of  propositions 
is given to us and that a sufficiently large collection of probability measures 
(states) on this logic is also provided. The reader is urged to look at the 
papers of  Randall and Foulis already mentioned to see how the notions of  
logic and state are obtained from the more fundamental notion of a manual. 

Let us now state the problem we are interested in describing in this 
paper. Let II denote our logic and A our selected convex set of  probability 
measures on II. All the definitions and algebraic assumptions for II and 
A that are necessary for the following discussion will be given with precision 
in the next section. Let ~9 ~ be the linear space of real-valued functions on 
II spanned by A. Then A is a base for the positive cone of ~ and ._90 is a 
base-normed space. The logic II can be embedded in 5 ~ the partially 
ordered, order-unit Banach space dual to 5C The problem is this: Under 
what simple mathematical conditions can we identify H with the extreme 
points of  the positive part  of  the unit ball of  ~9 ~* ? Let us now discuss the 
problem in various situations for which the solution is known. 

Let 24 ~ be a separable Hilbert space; II is the orthomodular  lattice of  
projections on ~,~ and A is taken to be the convex set of  positive trace class 
operators with unit trace, see e.g., Jauch (1968), Chapter 8. ~ is the real 
linear space of  self-adjoint trace class operators and 5 ~ is identified with the 
order-unit Banach space of bounded self-adjoint operators on ~ .  Kadison 
(1951, p. 328) proved that the set of extreme points of  the positive part of  
the unit ball of  ~ *  is the set of  projections on ~ .  In fact, he proved much 
more, namely, that the set of  idempotents in a yon Neumann algebra forms 
the extreme boundary of the positive part  of  the unit ball in the algebra. 
This example will be explained more fully in the last section in this article. 
Recently Alfsen and Shultz (1974), constructing a geometric spectral theory, 
proved that the projective units of a certain order-unit Banach space corre- 
spond to the extreme points of  the positive part  of  its unit ball. This includes 
Kadison's result when these projective units are identified with the algebra's 
idempotents; further, this theory also applies to general Jordan-Banach 
algebras. These latter algebras need not arise from algebras of  operators on 
a Hilbert space. Each of these examples has one common feature, namely, 
each element of the positive cone (of the W* algebra or the order-unit space) 
is represented by a spectral integral where the range of the measure defined 
in the integral is contained in the extreme points of  the positive part  of the 
unit ball. As we know in the standard quantum mechanical formalism, the 
bounded observables (positive linear functionals on the normal states) are 
identified with the spectral measures. I f  we now assume the quantum logic 
is finite and some other mild hypotheses are satisfied, Riittimann (1977) 
has been able to identify the logic with the extreme points of  the positive 
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part of the unit ball in S*. In this work, there is no assumption of  spectral 
representation in S ~*. Along this line, the physically motivated examples 
given by Foulis and Randall which also have finite logics have positive 
linear functionals on their spaces of states which are not determined by 
any spectral measure. The interpretation here is simple: there are positive 
linear functionals on these very general state spaces which are not associated 
with any bounded observable of the physical situation being described. 
These functionals seem to arise rather naturally whenever the geometry of 
the set of probability states contained in ~ is very different from that of a 
von Neumann algebra or Banach lattice. Hence, these physical situations, 
displaying a statistical uncertainty, are very different from classical statistics 
and also from traditional Hilbert space quantum mechanics. Therefore, the 
real problem to be tackled here is to find a simple mathematical property 
that applies to infinite logics, that is less restrictive than the assumption that 
each positive linear functional on the space of states be represented by a 
proposition-valued measure (a spectral integral), and that produces the result 
that the logic can be identified with the extreme points of  the positive part 
of the unit ball in ~* .  This has been nearly accomplished in Theorem 10. 

In the final part of this Introduction let us connect these results with 
some of the existing literature and also give some additional justification 
for proving these results at this level of generality. The finite logics given by 
Randall and Foulis and Rtittimann, already mentioned, are generally not 
projective geometries. Thus, they appear to be very different for the original 
examples proposed by Birkhoff and von Neumann (1936). In 1967, Gunson 
gave an algebraic formulation of quantum mechanics in which a picture 
close to the Hilbert space formalism was obtained. The fundamental work of 
Ludwig (1970) established many of the mathematical formalities used in 
this paper. In particular, the propositions of our logic are the decision effects 
in Ludwig's system. He proved that these points were also extreme points 
as we do in Theorem 10. In both of these works the aim is to derive the 
Hilbert space formalism from physically motivated axioms. This is not our 
purpose here, since we maintain that there exist other systems displaying 
some of the uncertainty properties of  quantum mechanics while not admitting 
Hilbert space representations. In a forthcoming paper, Riittimann and Cook 
(to appear) will present a theory of symmetry groups on quantum logics in 
which each symmetry on the states (a convex automorphism of A) is induced 
by and induces a symmetry on the logic (an automorphism of 11), see Jauch 
(1968, p. 142). For this result, it is necessary to give a geometric characteriza- 
tion of the elements of II as extreme points of the positive part of the unit 
ball in ~;P*. With this result, it is then clear that the group of  symmetries on 
the states is isomorphic to the group of automorphisms of  the logic. 
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2. PRELIMINARIES 

Let (II ,  <~) be a partially ordered set with at least two elements, largest 
element e and smallest element 0. Let 1I be equipped with an or thocomple-  
mentat ion '. Specifically, i f p  ~ II then p '  a II and the following are satisfied: 

(i) (p ' ) '  = p for alI p ~ II ; 
(ii) p ~ < q i n I I i m p l i e s q '  ~<p';  

(iii) p v p '  = e a n d p  A p '  = 0 f o r a l l p ~ H .  

We say that p, q are orthogonal, denoted p A_ q, if p ~< q' .  We will assume 
that  if {pl, P2 . . . . .  p~} is a finite or thogonal  set in II then v ~=1 p~ exists in II. 
Finalty, we insist that  (H, ~<) satisfies the orthomodutar identity: p <~ q in 
1I implies q = p v (q/x p'). The set H satisfying all the conditions above 
will be called a quantum logic and its elements propositions. (II ,  ~< ) is called 

orthocomplete if for each countable or thogonal  sequence {pz, P2 . . . .  } in 
II there exists p a II such that  p = V~~ 1 pk. We note here that  a quantum 
logic need not  be a lattice. For  further details on proposit ion systems, the 
reader is urged to see Jauch (1968), Chapter  5, or Piron (1976), Chapter  2. 

A state ~o: H --> [0, 1] is a function with the properties:  (i) o~(0) = 0 
and re(e) = 1; (ii) if {Pl, P~ . . . . .  p~} is a finite or thogonal  set in H with 
P = V~=~ Pk, then o~(p) = Z~=~ o~(p~). A state o) is called eountabty additive 
if  {p~,p2, . . .}  is an or thogonal  sequence with p = V 2 = l P k  in 1I then 
~o(p) = ~o= 1 o)(Pk)- We will denote with f~ the set o f  all states (finitely 
additive) on II. We will also assume that  there are sufficiently many states 
in f2 to separate the points o f  1I; i.e., for p r q in II,  there exists ~o E f~ 
such that  ~o(p) va o)(q). Finally, it is easy to see that f2 forms a convex set. 

As in measure theory, one can form linear combinat ions o f  positive 
measures and thus construct  vector spaces o f  signed measures. We now do 
likewise; let ~ = {c~o~: o) e f2,.c~ >/ 0 in l~} and 5O = ~ - ~.  Then 5`, is a 
vector space, called the space o f  signed states, with ff  as a generating cone. 
I t  is easy to see that  f~ forms a base for  ~g; specifically, for each x # 0 in 
cg there is a unique scalar a > 0 and a unique co in [2 with x = c~co. I f  A 
is a convex subset o f  f2, which separates the points o f  II, then we can form 
the subcone ~a  of  cg with base A and construct the analogous vector space 
5" = ~ a  - cg^. I f  U is the convex hulI o f  A U ( -  A) then U is a symmetric, 
absorbing, and convex set in 5". Its Minkowski  functional is a seminorm 
on 5`,, see, e.g., Kelley and Namioka  (1963, p. 15). This functional is, in 
fact, a norm--ca l l ed  the base norm. We denote it by ]]. II and observe for 
each s E 5 ~ that  llsll = inf{a + fi: aw - fly, ~, fi >1 o in N, w, v ~ A}. 

Let 50* be the continuous dual o f  (5`,, H" 11)- Each p in 11 is represented 
by an element/7 o f  5"* by the formula fi(oJ) = oJ(p) for each oJ e A. It  is 
easy to see that  this formula defines a unique element in 50* and, therefore, 
one may consider II embedded in 5`,*. I t  is well known that  50* is an order- 



Geometry of Generalized Quantum Logics 945 

unit  Banach space (Alfsen, 1971, p. 18) and  the fol lowing quest ion now 
arises:  Is the embedding  o f  II in S ~* order  preserving and inject ive? W e  
call A full over  12 when p l  ~< P2 in II iff m(p~) ~< ~o(p2) for  all ~ s A. Since 
we wan t  the embedding  o f  17 in 60* to  be injective and order  preserving,  we 
will a lways assume A is full over II.  This clearly yields these condi t ions .  
Fur ther ,  when A is full over 17, A separates  the elements of  II.  I t  now follows 
that  e ~ II is represented by  the order -uni t  in 60* and the order  interval  
[ - e ,  e] in 60* is the closed unit  ball  o f  5 ~ Lastly,  p ~ II implies p '  = 
e - p in 60*. 

3. THE J O R D A N  D E C O M P O S I T I O N  PROPERTY 

Let  ~ _ II such tha t  0, e ~ ~ .  F o r  s ~ 60 we define 

Hs llz = sup {s(p)  - s (p' ) :  p E ~ )  

Since p - p '  = 2p - e in 60", we have 11 s[Iz = sup (2s(p)  - s ( e ) : p  ~ } .  
We use a subscr ipt  Z on this funct ion because the Jo rdan  decompos i t ion  
p rope r ty  for  states was in t roduced  by  Zier ler  (1959, p. 21) and  this is in- 
t imate ly  connected with  II" llz. I t  is easy to see tha t  1I" IIz is a seminorm on 
60 and agrees with the base no rm on 5 .  Since - e  ~< p - p '  ~< e, for each 

s in @, Ilsllz <- Ilsll. 
A set o f  states A _ f2 is called unitaI i f  for  each p ~ II there is an ~o 

in A such tha t  ~o(p) = 1. Fur ther ,  when A is uni ta l  over 17, for  each p E I I ,  
p - p '  has o rde r -un i t  n o r m  equal  to  uni ty  in 60*. 

I f  E is a no rmed  space, a family  o f  funct ionals  F = ( f :  f e  E*)  is called 
total over E i f f ( x )  = 0 for all f ~  F implies  x = 0 in E. I t  is well known  
tha t  F is to ta l  over E iff span (F)  is w(E*, E)-dense  in E*.  The fol lowing 
simple p ropos i t ion  is essential.  

1. Proposition. The seminorm 1[-][z is a no rm iff N _ II  is to ta l  
over 60. 

Proof. Assume  ~ is to ta l  and  for  some s E 60 llsllz = 0. Then,  for  all 
p ~ ~ ,  s(p - p ' )  = 0; this implies  2s(p)  - s(e) = 0 or  that  s(p) = �89 
Since this is t rue for  all p ~ ~ and 0 e ~ ,  we have s ( e ) =  0. Therefore,  
s(p)  = 0 for  all p ~ ~ and  f rom tota l i ty  s mus t  be O. 

The  converse is clear. ! 
W e  observe tha t  12 is always to ta l  over 60. Let  ~ c 17 and let A be a 

set o f  states on II. We  call ~ A fundamental prov ided :  (i) 0, e ~ ~ ,  
(ii) {Pl, P2 . . . .  , p~} c ~ implies P l v  P2 v - - - v p~ E ~ ,  and  (iii) for  each 
q ~ I / ,  co ~ A and  �9 > 0, there  ex i s t sp  ~ ~ such t h a t p  ~< q and  o~(q - p)  < �9 
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2. Proposition. I f  A is a convex set that  separates the points  of  17, 
and ~ is A fundamenta l  in 1I, then ~ is total  over 5 ~ and, therefore,  
]l' IIz is a n o r m  on 50. 

Proof. Suppose s e 50 and s(p) = 0 for  all p e N. Since A is a base 
for  the positive cone of  50, s --- a~o - flu. Then,  am(p) = flu(p) for  all p E 
and, in part icular,  aoJ(e) = fly(e). Assuming wi thout  loss that  a r 0, we 
have ~ = / 3  r 0. Again assuming without  toss that  ~o r v, there exists 
q c 17, q r 0 and oJ(q) va v(q). Let E = Ion(q) - v(q)] > 0. Since ~ is A 
fundamental ,  there exists p s N such that  p ~< q, ]o~(q) - o,(p)l < ~/2 and 
Iv(p) - v(q)[ < e/2. Hence,  [~o(q) - u(q)[ ~< [o~(q) - o,(p)] + l~o(p) - v(p)[ + 
Iv(p) - v(q)l < ~. Having  a contradict ion,  we must  have s = 0. m 

The connect ion of  this concept  with regular measures is explained in 
the last section. The following proposi t ion is essentially contained in Kronfli  
(1970, p. 195) and revised by Gudder  (1973, p. 206). Our  p r o o f  is entirely 
different and rather  simple. We will not  use the result in the sequel, but  it 
seems to this author  to be interesting in itself. 

3. Proposition. Let 17 be a a-complete  lattice, A the set of  all count-  
ably additive states on 17, and let A separate the points  of  II. I f  

_ 17 is A fundamenta l  then A with the topo logy  induced f rom the 
no rm H" [[z is a complete  metric  space. 

Proof. Let (~%) be a 11" [[z-Cauchy sequence in A. Let  p ~ II and e > 0 
be given. There exists an index N such that  n, m >i N implies [)o~ - ~Om[Iz < 
e/3. Since ~ is fundamental ,  there exists q in ~ (depending on n and m) 
such that  q ~< p and 

I ~ = ( p ) -  OJm(p) [ ~ con( p - q )  + [ Iw~-  ~omllzllq[ I + , o ~ ( p -  q) 

ff E E 

< ~ + ~ + 5  
Therefore,  define 

o~(p) = lira oJ=(p) 
n - ~ c o  

for  each p ~ 17. I t  is easy to see that  oJ has range in [0, 1] and is finitely 
additive. To  obtain countable  addi t iv i ty  consider the following: Let  (pz) 
be an or thogonal  sequence in H with p = ~/z Pk. Let  ~r be the a sublattice 
of  II generated by the set (p, Pl,P2,. . .} .  I f  we restrict each o~ to d then 
oJ~ is a countably  additive measure  on d and ~%(S) ~< 1 for  all n and all S 
in zr I t  is well known that  the event-wise limit o f  uni formly bounded  mea-  
sures is a finite countably  additive measure,  see, e.g., Royden  (1968, p. 232). 
Thus,  oJ is a measure on d and, consequently, o~ ~ A. Finally, (~%) ~ o~ in 
II" lit. Since II is total  and (oJ,) is norm-Cauchy ,  this follows immediately.  ! 
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I f  s l ,  s2 >/ 0 in 50 then we say tha t  sl  and  s2 are N-mutually singular i f  
there  exists p in N such tha t  s~(p) = 0 and  s2(p') = 0. 50 is said to  be 

N-Jordan generated i f  for  each s in 5 ~ there exist vectors  u, v /> 0 in 5 ~ for  
which s = u - v and u, v are N-mutua l ly  singular. Final ly ,  we say tha t  50 
is e-N-Jordan generated i f  for  each s in 50 and E > 0 there exist vectors  
u , v  > / 0 i n S ~ a n d p e N s u c h t h a t s = u -  v ,u (p )  < e, a n d v ( p ' )  < E. 

4. Theorem. Let  A be a convex, full and  uni ta l  set o f  states on II.  
I f  N _c II is A fundamenta l  then the fol lowing are equivalent :  

(1) F o r  each s e 50, ]]s [[z = lls l[- 
(2) The w(5 P*, Y) -c losed  convex extension o f  { p -  p ' :  

p e ~}  = {4 e 50*: - e  ~< ~b ~< e}; a l ternat ively  expressed,  

{ p - p ' : p e N } o ~  [ - e ,  e]. 
(3) 50 is � 9  generated.  

Proof. (1) iff (2): we have lISllz = Ils[[ for  all s e 5 ~ iff their  respective 

dual  uni t  bal ls  in 50* are the same. These are,  respectively, {p - p': p ~ N}o ~ 

and I - e ,  el. 
(1) implies  (3): let s e 50; to demons t ra te  (3) we may  assume wi thout  

loss tha t  nei ther  s >/ 0 nor  - s  >/ 0 and Ilsll = 1. ( I f s  > /0 ,  s = s - 0 and  
for  p = 0, s(p)  = 0(p ' )  = 0.) Let  �9 > 0 be given. Then there exist p e ~ ,  
scalars %/3 > 0, and  ~o, u in A such tha t  s = aco - / 3 u ,  1 + �9 > a + / 3  /> 
1 = [is II, and  s(p - p ' )  + �9 > 1 = lls IIz. Thus, s(p - p ' )  + �9 = s(2p - e) + 
�9 > c~ + / 3  >/ 1. This implies  ~o~(p) - / 3 u ( p )  + �9 > ~; hence, �9 > ~wlp ' )  + 
/3v(p). Let  u = ~o~ and  v = / % .  W e  have s = u - v, u(p') < �9 and v(p) < �9 
and (3) is demons t ra ted .  

(3) implies  (1): assume nei ther  s / >  0 nor  - s  >/ 0 and  �9 > 0 is given. 

As  a l ready  observed I[S[[z <<. Ils//for all s in 50. I f  (3) holds  then there exist 
scalars ~,/3 > 0, w, v in A and  p e N such tha t  s = ~o - /3v ,  ~oJ(p') < �9 
and  /3v(p) < �9 Then,  s(p - p') = ~o~(2p - e) - / 3 v ( e  - 2p') = 2[~o(p)  + 
/3v(p')] - (c~ +/3) .  Since ~(p')  < e/a, w(p) = 1 - oJ(p') > 1 - �9 sim- 

ilarly,  v(p') > 1 - �9 Thus II s [Iz >>- s(p - p ' )  > 2[a(1 - �9 +/3(1 - �9 - 
(~ + /3 )  = ~ + /3 - 4�9 Hence,  IlSllz >/ II sI1. ! 

Let  E be a local ly convex space with  dual  E*.  I f  M is a subset o f  E* 
(not  necessari ly a subspace),  we denote  the weakest  l inear  topo logy  on E 
mak ing  each element  o f  M cont inuous  by w(E, M) .  W e  note  that  w(E, M )  = 
w(E, s p a n ( M ) ) c _  w(E, E*). The topo logy  w(E, M )  is Hausdor f f  i f  M 
separates  the po in ts  o f  E. 

5. Theorem. Let  lq be a e-complete  lattice,  A a convex, full, and  
uni ta l  set o f  states, and  let  N be a A-fundamenta l  subset  o f  II .  I f  
A is w(50, ~ ) - sequen t ia l ly  compact ,  then the fol lowing are equivalent :  

(1) 5 ~ is � 9  generated.  
(2) 5 ~ is I f - Jo rdan  generated.  
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Proof.  (2) implies (1) is clear. To prove the converse let s E 50 and 
suppose, for simplicity, that  [[s ]] = 1. For  each positive integer k there exist 
scalars ak,/3~ >/ 0, and ~ok, ~k ~ A such that  s = aka,~ - fikvk and 1 + 1/k >1 

ak +/3~ >t 1 = I[s II. Since A is w(5o, ~)-sequential ly compact  there exist 
o J, v e A such that (selecting subsequences if necessary) ~oe --> ~o and v~ -+ v. 
Similarly, a~ -+ a and/3k -+ fi in [0, 1] and 1 -- a +/3.  Thus, s = a~o - /3v .  
We may assume a and/3 r 0. Since we are assuming (1) there exist (p~) c 
such that  (A) 1 >/ a o ~ ( 2 p k -  e ) - / 3 v ( 2 p k -  e) > 1 - 1/k. Hence, 1 /> 
a[2co(pk) - l] +/311 - 2v(pk)] > 1 - 1/k and therefore, either 1 - 2v(pk) > 
1 - 1/k or 2o~(p~) - 1 > 1 - 1/k. Without  loss assume the former;  this im- 
plies u(p~) < 1/2k. I f / ~ p ~  = p e II then v(p) = 0, since v E A and II is a 
a-complete o r thomodular  lattice. 

F rom (A) follows: 1 >i a[2w(p) - 1] + / 3  >i 1. Hence, 2o~(p) - 1 = 1 
and w(p' )  = O. I 

We now observe t h a t  ~o and v are mutually singular and we have 
obtained a close analog to the standard H a h n - J o r d a n  decomposi t ion for 
signed measures. 

6. Corollary. Let A be a convex, full, and unital set o f  states, 
be A-fundamental  in II, and let A be w(-5o, ~)-sequential ly compact ;  
then (5 ~, [I. [[) is a Banach space. 

Proof.  Let ( s , )be  a norm-Cauchy  sequence in 5 p. We may assume with- 
out  loss that  [[snll ~< 1 for. all n. Following the p roof  o f  the previous theorem 
we have s~ = a~oJ~ - /3~v~,  a~,/3~ 1> 0, an +/3~ ~< 1, and o,~, v~ ~ A. Again,  
selecting subsequences if necessary, let a n -+  a,/3~ -+/3, w n -+  w, and v~ -+ v. 
Then s ,  -+ s = aw - / 3 v  in w(5 v, ~ ) .  Since ~ is total and (s,) is norm-Cauchy,  
we have norm convergence as in Proposi t ion 2. R 

A few remarks concerning the paper o f  Kronfli (1970) are in order. The 
"natural  metric" o f  Kronfli d(o~, v) -- sup {oJ(p) - v(p): p E I I }  is clearly 
�89 - vii z on f2. The "total  variat ion" norm of  5 ~ as defined there agrees 
with the base norm when Kronfli 's  positive and negative parts are in f2. 
Since these parts may not  be orthogonally additive, it would be interesting 
to know what  hypothesis must  be added to this discussion in order that  they 
be additive. I f  this were so we would have a nearly complete generalization 
o f  the H a h n - J o r d a n  theorem of  measure theory. 

We now take up a final refinement o f  these concepts. This result is a 
reformulat ion of  a result of  Dixmier (1948, p. 1069) and Edwards (1964, 
p. 405) to generalized quantum logics. 

7. Theorem. Let A be a convex, full, and unital set o f  states and 
let ~ be a A-fundamental set o f  proposit ions in II. I f  5 ~ has the 
base-normed topology and 5O, is the norm-closure o f  span (~)  in 
5O*, then 5P, is an order-unit  Banach subspace o f  the order-unit  
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Banach space 50*. If 50 is e-~-Jordan generated then 50 is order- 
isometric to a w(50", 50,)-dense subspace of the base-normed dual 
space 50*. In particular, 6" is order-isometric with 50* iff A is 
w(~  ~)-compact.  

Proo f  50* is an order-unit Banach space. Clearly, 50, is also an order- 
unit Banach subspace of 50*. The ordered Banach space 50* is a base- 
normed dual space of 50,; we denote its base by Zx. If  we consider the dual 
pair (50,, 50) then 50, separates the points of ~ To see this, suppose r = 0 
for some s in 5 ~ and all r in 50,. Then s(p)  = 0 for all p e ~ and from the 
hypothesis that 50 if E-~-Jordan generated it follows that s is the zero 
functional on 50*. Hence, 50 is isomorphic to a w(50", 50,)-dense subspace 
of 50*. Henceforth we will simply consider 50 ~ 50*. It is clear that the order 
of 50 is the same as that induced from 50*. The unit ball U of 50* is the 
polar of {p - p ' :  p ~ ~}. Consequently, the unit ball of 60 is w(50", 50,)- 
dense in U with A being w(50", 5~,)-dense in A. 

If  50 = 50", by the Banach-Alaoglu theorem, A is w(5~, 50,)-compact. 
Hence A is also w(~  ~)-compact,  since ~ c 50,. Conversely, if A is 
w (~  ~)-compact then A is w(~  50,)-compact, since the w(5~, 50,)-topology 
agrees on A with the w(~  ~)-topology, see Robertson and Robertson 
(1966, Cor. 3, p. 104). Consequently, A is w(50~, 50,)-compact and A = A; 
thus 50 = 5 ~ m 

We would now like to demonstrate that each proposition in II is an 
extremal point for [0, e]. Since [ - e ,  e] is w(50", 50)-compact and convex 
and affinely homeomorphic to [0, e], this is equivalent to showing each 
p - p' is extremal in [ - e ,  e] for each p ~ II. If 50 is E-~-Jordan generated, 
then, using Milman's theorem, we know that the extreme points of [0, e] 
are in the w*-closure of @. Recall Milman's theorem: Suppose M is a set 
whose closed convex cover N is compact. The extreme points of N lie in the 
closure of M (Ki3the, 1969, p. 332). In order to demonstrate that each 
proposition is extremal, we need to add some hypotheses to A. 

If A c f2, we say A is a strong set of states provided for each pair, 
p , q  in II: {c~ ~ A: oJ(p) = 1} _~ {oJ e A: oJ(q) = 1} implies p ~< q in II. We 
observe that if A is strong then A is separating, full, and unital. 

8. Theorem. If  A is strong over 11, then each p E FI is extreme in 
the convex hull of II (denoted ( I I ) )  in 50*. 

Proof. Let Po ~ II and suppose Po belongs to the interior of  a line 
segment joining two elements o f ( H ) ;  i.e., 

n 

Po = ~= l a~pi, Pi ~ H, o~i > 0 
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and 

~ i =  1 

I f  o~ ~ A and W(Po) = 1 then w(p~) = 1, i = 1, 2 , . . . ,  n. Since A is strong, 
Po ~< A in 5 ~*, i = 1, 2 , . . . ,  n. Suppose for  some i, say i = 1, there exists 
some O~o ~ A such that  o~o(po) < o~o(p~). Then, 

 o(p0  = > + 
i = 1  i = 2  

o r  

Since Po <~ P~, a~/(1 - ~1) > O, i = 2 . . . . .  n, and 

~ J ( 1 - a l ) =  1 

it must  also be true that  

o~0(P0 ) ~< ~ ~/(1 - ~0O, o(p3 
i = 2  

This gives a contradiction, so Po = Pl . . . . .  P~. m 

9. Proposition. Let A be strong over II,  p, q ~ II and a > 0 in ~. 
I f  ~p ~< q in 5 '~* then p ~< q in 5 p* and, of  course, in II. 

Proof.  Let oJ E/x such that oJ(q') = 1. This implies oJ(q) = 0 and thus 
oJ(p) = 0. Whence, oJ(p') = 1. Since A is s trong over l-I, q '  ~< p '  and therefore 
p <~q. R 

I f  ~ is a A-fundamental  subset o f  1-I and 5 p is e - ~ - J o r d a n  generated, 
then for each ~ E [0, e] there is a net (~B) in the convex hull o f  ~ (denoted 
( ~ ) )  such that  ~ = w e a k * - l i m  B (~B). If, in addition, this net can be 
chosen so that  ~ ~< q~ for all fl, then we will say that  o~ is monotonically 

.@-Jordan generated. This is a far weaker assumption than having each 
element o f  .90* represented as a spectral integral. 

10. Theorem. Suppose A is strong over l-I, ~ is a A-fundamental  
subset o f  II,  and 5 P is monotonical ly  E-~-Jordan  generated. Then 
each p ~ II is an extreme point  o f  [0, e] and each extreme point  o f  
[0, e] is in the w(oW*, 5~) closure o f  ~ .  

Proof.  Let p ~ II,  ~ ,  ~2 e [0, e], and let p = �89  + �89 We show that  
p = ~b~ = ~2 by showing that  co(p) = oJ(~l) = oJ(~2) for  each oJ ~ A. 
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Let co a A and e > 0 be given. Then there exist r r e ( ~ )  such that 
r ~< r r ~< r 0 ~< ~o(r - r  < e/2, and 0 ~< co(r - r < e/2. Let 

k = l  

for i = 1, 2 and these are understood to be nontrivial convex combinations. 
1 For i =  1, �89162 ~<P implies Zflk, zPk.1 <<-P, 1 <~ k <~ n~. By Proposition 9 

each p~.l < p. A similar computat ion for i = 2 can be made and therefore 
we have r162 ~<P. Then, 0 ~<r  (�89162 +�89162 ~ < � 8 9 1 6 2 1 6 2  
lc0(r - r < E/2. Therefore, 0 ~< co[p - (�89162 + �89162 = �89 - ~bt) + 
�89 - ~b2) < e/2. Thus, co(p - ~b~) < e, i = 1, 2; it follows: Ico(P - r ~< 
]co(p - r + [oJ(r - r < 2e. Consequently, co(p) = w(r = o)(r I 

11. Corollary. When, in addition, A is w(50, ~) -compact  in the 
theorem above, each element of  ~ is an extreme point for the unit 
interval [0, e] in 50, and the unit ball of 5z, is the w(50,, 5e)-closed 
(also norm-closed) convex hull of  {p - p ' :  p e ~}. 

Note that [0, e] in 50, may not be compact in any locally convex 
Hausdorff  topology. (Consider the Hilbert space example in the next section.) 

4. EXAMPLES 

The first example we develop is the standard model of  nonrelativistic 
quantum mechanics. Let H be a separable, infinite-dimensional, complex 
Hilbert space. The logic 1-I is taken to be the set of  all orthogonal projections 
on H. The identity operator J is identified with e in II and the partial order 
of  II is the following: P ~< Q in II if  R(P)  (the range of P) c_c_ R(Q). Or- 
thogonality is defined by P l Q if R(P)  2_ R(Q) in H. It  is well known that 
(l-I, ~<, A_) is a ~-eomplete orthomodular  lattice, see for example, Jauch 
(1968, Chapter 5). Using Gleason's theorem (1957) we may identify all the 
countably additive states with the positive self-adjoint trace class operators 
on H of  unit trace. Again we denote this set with A. Then span (A) = 5 ~ 
is the real partially ordered base-normed space of self-adjoint trace class 
operators. Recall that the ordering is given by A E 5~, A t> 0 if (Ax, x) >1 0 
for all x ~ H where (., .) denotes the inner product in H. 

The order unit dual 50* of 5 ~ is order-isometrically identified with the 
Banach space B(H) of  all bounded self-adjoint operators on H. I f  A ~ B(H) 
and C E 5" then Tr (C o A) = Tr (A o C) gives the bilinear pairing of 5 ~ 
and B(H) where Tr (o) denotes the trace of  an element of  ~ For  the details 
of  this construction see Schatten (1960, p. 46). 

Let x, y ~ H. Define the operator x | )7 on H as follows: for z ~ H, 
x | f ( z )  = (z, y)x. Let P be a projection on H with range R(P). f f  (e,) is 
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any or thonormal  basis for R(.P) then P = Y., e, Q ~. where this series 
converges monotonical ly  in the w(5o*, 5o)-topology, see Schatten (1960, 
p. 10). In particular, for each x ~ H, P(x) = 72~=1 (x, e,)e,, Finally, note 
that  for each x ~ H w i t h  ]]x[[ = 1, x | 2 c A, since Tr (x | 2) = (x, x) = 1. 

We now observe A is strong over II : if P,  Q s H, o~ ~ zX and o~(P) = 1 
implies o~(Q) = 1 then we show R(P) ~_ R(Q) and, thus, P ~< Q. Let 
eo ~ R(P) and P = Y~ e~ | ~ ;  then Tr (eo | eo ~ P )  = Tr (e0 | ~o) = 1. 
Hence Tr (eo @ e0 o Q) = 1. Consequently,  e0 ~ R(Q). 

We next show that  5O is e - ~ - J o r d a n  generated when ~ is chosen as the 
fundamental  set o f  all projections with the property p ~ ~ if R(P) is finite 
dimensional or p = J .  We loosely refer to these as the finite projections o f  
H. It  is easy to see that  ~ is indeed A-fundamental.  Recall that  if  oJ ~ A 
then ~o = y~, 1,e~ | ( ,  where (e.) is an or thonormal  sequence, A, > 0, and 
~ ,  ~. = 1, see Schatten (1960, p. 41). The cone of  5O is generating and the 
representation o f  ~o is norm-convergent  to ~o. I f  x ~ ~ using the spectral 
theorem, x may be written as x = ~ol  - / 3 ~ 2 ,  ~,/3 >/ 0, ~ + / 3  = IIx[[, and 

h, e ,  @ A for i = 1, 2 and with e~l)A_ e~ 2) for all n, k. For  
each e > 0 there is an index N such that  P = ~ =  ~ e~ ~ | ~(~1) s N c II  and 
Tr (wl o P)  >i 1 - e. Hence, Tr ( ( J  - P )  o oJ1) < e and Tr (oJz o P )  = 0. 

I f  we now consider the norm closed linear span o f  N in B(H) and call 
this space ~ . ,  then 5O. is the order unit  space o f  self-adjoint compact  operators 
with the identity operator  adjoined. I t  is well known that  (5o.) * is order- 
isometric to ~ see Schatten (1960, p. 46). Consequently,  A is w ( ~  ~ ) -  
compact  and, o f  course, 50 is a Banach space. 

Lastly, to show that  each P ~ 17 is extremal in [0, J ] ,  we show for each 
A ~ [0, J ] ,  there exists a net ( ~ )  c <~> such that  w* - lim ~ = A and 
each q~ ~< A. We have already observed that  if P s II,  P = ~ ,  e, | ~, and 
this series converges monotonical ly  f rom below in the w* topology. Thus, 
for  each e > 0 and ~o ~ 2x there exists a finite projection P~ ~ ~ with P~ ~< P 
and o~(P - P~) < e. 

Let  A be the spectrum o f  A. Then A is a compact  subset o f  [0, 1] in 
N. Wi thout  loss we may assume I]A[] = 1, so that  1 ~ A. F r o m  the Gelfand 
representation theorem, the closure o f  the real polynomial  algebra generated 
by A in B(H) is lattice isometric to the Banaeh lattice C(A,  ~). Under  this 
mapping  p(A) = ~ corresponds to A and 1 = x~ corresponds to ~ in B(H). 
This mapping can be extended so that  the characteristic function o f  each 
Borel set in A corresponds to a projection in B(H). Let I'~ = [k/n, l] n A 
for k = 1, 2 , . . . ,  n and let I'~ -~ P~ e II c B(H). Then, 

1>/  A - - ~ . I  A ~ , 1  ~Xr~(a) /> -- P~ , 
k=l k=l 

see Reed and Simon (1972, p. 225). Since A is norm approximated from 
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below in the interval [0, J ]  by ~ = 1  (1/n)Pk, the desired net, which is to be 
w* convergent to A, can be constructed. Thus, using Theorem 10, we have 
shown that  each projection on H is extremal for  [0, J ]  in B(H)  (Kadison,  
1951, p. 328). In this situation one can actually show that  all extreme points 
o f  [0, J ]  are projections, but  this is not  directly deducible f rom Theorem 10. 

Let us now consider the second example. Let Y be a compact  Hausdorff  
space. Let II be the family o f  all Baire sets o f  Y. By the Baire sets we mean the 
smallest e algebra o f  subsets o f  Y that  contains the compact-G0 sets. We 
may define or thogonal i ty  in H by disjointness in Y; i.e., B1, B2 ~ 11 and 
B~_I_B2 means B ~ n B 2  = q~ in Y. The order ~< on II is set inclusion 
and (17, ~<, 2_) is a e-complete Boolean lattice. Let A be the set o f  all Baire- 
probabili ty measures on II. The space 50 is the Banach space o f  all signed 
Baire measures with the total variation norm. This is the same as the 
base-norm topology on ~ No te  that  C(Y)* = 

Each Baire set B c y defines a linear functional p~ on 5 e by the formula  
pB(s) = f XB ds for each s ~ 55. Hence, it is easy to see that  II is order injected 
into 6 p*. The state space A is strong over 17: Suppose PA, PB ~ 17 and for 
each t~ E A, /z(pA) = 1 implies I*(PB) = '1. I f  a c A and 3~ ~ A is the unit- 
point  measure at a, then f Xa d ~  = 1 and this implies f XB d~, = 1. Hence 
a E B and PA ~ PB. 

oW is I f -Jordan generated. This is simply the classical H a h n - J o r d a n  
decomposi t ion theorem for signed measures. 

Several choices for @ ~ 17 now exist. These choices will depend upon  
the topological structure o f  Y. Since we are assuming, at this point, only 
that Y is compact ,  let us choose ~ = {PD: D a closed Baire set}. Then ~ is 
a fundamental  family:  Clearly, 0, e ~ ~ and ~ is closed under finite joins. 
Also, ~ is total over A: Suppose s ~ 5~, Hsl] = 1 and s(p)  = 0 for  a l lp  ~ .  
Then s = ~/zl -/3/z2, a,/3 >~ 0, a + t3 = 1 and ~1,/z2 ~ A. I f  c~ v~ 0, /zl = 
(/3/a)lz2 on all compact-G0 sets in Y. Since/z~ and/z2  are Baire measures, 
we have s = 0 in 5~. Since each Baire measure is regular, we have that  
is fundamental .  

Next, 5 ~ is E-~-Jordan  generated. This follows f rom the regularity of  
each Baire measure. I f  ix ~ 5 e and II/zll = 1, then there exist two mutually 
singular Baire measures/z~ and/z2 (llt~l] ~< 1, i = 1, 2) such that  t~ = tL~ - / z 2 .  
Let 7"1 and T2 be the closed Baire sets which support  tz~ and/zz,  respectively. 
For  ~ > 0 there exist compact-G0 sets V~ _c T~ and V2 _~ T2 such that  
V1 n V~ = r and/z~(Vz) = Ix~(V~) = 0 < ~. 

Denote  the norm-closed linear span of  ~ in 5 r by 5a,. The base A 
is w(5~, C(Y))-compact .  Let  D be a Baire set and PD ~ 5'0*. Then X9 ~ C(Y)  
iff D is a clopen set in Y. Thus for  a connected compact  space Y, A is not  
w(S~, 5~,)-compact but is w(5~, 5a,)-closed. For  general results like this see 
Edwards (1964, p. 405). 
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To see tha t  each PD ~ II cor responds  to an extreme po in t  in [0, e] in 
C(Y)**,  we observe tha t  C(Y)** is la t t ice- isometr ic  to a space C ( Z )  where 
Z is a hyper s ton ian -compac t  space and  Po is associa ted to a character is t ic  
funct ion o f  a c lopen set o f  Z. F o r  details  o f  this one can see, for  example ,  
Kel ley and N a m i o k a  (1963, w or  Bade (1971, Section 8). Us ing  the 
s tructure o f  C ( Y ) * *  one can also ob ta in  this  result  f rom Theorem 10 o f  
this paper .  

Final ly ,  i f  ~ is a Boolean  algebra,  then, via Stone 's  representa t ion  
theorem,  M may  be identif ied with the clopen sets o f  a to ta l ly  d isconnected  
compac t  Hausdor f f  space Y. Each clopen set is a Baire set and  in this case 
we may  take  ~ = {PD: D clopen in Y}. Since the clopen sets o f  Y form a 
basis for  Y, we may  now apply  the second example  direct ly to this case. 
W e  observe tha t  C ( Y )  = 5~., A is w ( ~  ~Z)-compact and  the uni t  bal l  o f  
C ( Y )  is not  compac t  (in general)  but  is the  norm-c losed  convex hull  of  its 
extreme points .  
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